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Abstract

A linearized dynamic model is developed for the Large-Angle Magnetic

Suspension Test Fixture, a laboratory-scale magnetic suspension device under

development at NASA Langley Research Center. The model follows outlines already

established for the suspension elements, but is extended to include the analog controller

and eddy current effects. Complete numerical data and some experimental validations

are included.

List of Matrices (used in State-Space representations)

Open-Loop Dynamic Models

A'W 2, _W 2, ¢,

Acoil, %cmix, ¢coil, fl)coil

_coil

Ac, _c, ¢c, _c

MAc, _%c, 6¢c, _c

¢¢g, _g

Ae, Be, Ce, _'J)e

- Open-loop suspended element.

- .A_V 2, _'W" 2 prior to mass and inertia weighting.

- Open-loop power supply/coil combination.

- fl_cmix prior to addition of demand allocation matrix.

- Single dual phase-advance compensator.

- Five parallel dual-phase advance compensators.

- Compensators with gain matrix added.

- Eddy current effect of field on model.

Connected Elements

Mp, _p, {2p, _)p

Afb, %fb, Cfb,

- Forward path of closed-loop system.

- Closed-loop system.

Miscellaneous

gn

Mix

L

RK

- Gain matrix (terms on leading diagonal).

- Demand allocation matrix.

- Coil inductance matrix

- Resistance matrix, including current feedback



1. Introduction

As part of NASA program to demonstrate the magnetic suspension of objects

over wide ranges of attitudes, a laboratory-scale research project has been undertaken,

the Large-Angle Magnetic Suspension Test Fixture (LAMSTF). A cylindrical element

containing a permanent magnet core is levitated above a planar array of electromagnets,

permitting demonstration of stability and control in five degrees-of-freedom, and of

controlled rotation of the model in one degree-of-freedom over a range of 360 degrees.

Since a significant portion of this research effort will focus on the development

and validation of control approaches, dynamic models of the LAMSTF are required to

assist in control system development. This report discusses and details the development

of a relatively simple linearized dynamic model, implemented using MATLAB.

2. Hardware Description

Five, room temperature, copper electromagnets, with iron cores, are mounted in

a circular array on a heavy aluminum plate. The suspended element consists of

Neodymium-Iron-Boron permanent magnet material epoxied into an aluminum tube.

The position sensing system features multiple infra-red light beams, arranged in two

orthogonal planes, partially interrupted by the model. The complete sensor system is

mounted on a framework which is initially fixed in one orientation relative to the

suspension electromagnets. However, the design permits rotation of the framework

about a vertical axis, by some form of drive to be added later. A schematic diagram of

LAMSTF is shown in Figure 1. The analog controller includes position sensor decoding,

dual series phase-advance compensators and extensive decoupling at the output of the

controller. A block diagram of the controller is shown in Figure 2. Each electromagnet is

driven by a transistor switching power amplifier. More extensive details of LAMSTF

hardware can be found in Refs. 1,2.

3. Linear Modelling of LAMSTF

Figure 3 shows a block diagram representing the important dynamic elements of •

LAMSTF. A State-Space model of this system will be developed. More detailed

dynamic features, such as eddy currents, will be discussed later.

3.1 "Plant" - (Suspended Element)

Following the theory and notation of Refs. 3,4, the linearized dynamics of the



suspendedelement, due to its interaction with the quasi-steadysuspensionfields, can be
written asfollows :

A = 14Z2x

B

0 0 -B x 0 0 0 0 -Bxz _By z _Bz z

0 0 0 -B x 0 0 0 Bxy Byy By z

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 -Bx z 2 Bxy 0 0 0 (Bxx)x (Bxx)y (Bxx)z

0 0 Byz (Byy-Bxx) 0 0 0 (Bxy)x (Bxy)y (Bxy)z

0 0 (Bxx-Bzz) By z 0 0 0 (Bxz)x (Bxz)y (Bxz)z

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 J

and W 2 = Vol x My¢
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In the particular case of LAMSTF, the numerical values of .A, W"2 and (_,'W'2/Imax)

are found to be (see also Appendix A) :

A=W" 2 x

0 0 7.8466e-3 0 0 0 0

0 0 0 7.8466e-3 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 -9.25e-2 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

m

4.3308e5

4.3308e5

-9.25e-2 0 0

0 0 0

0 0 0

0 0 0

4.7101e-1 0 -2.3664e-4

0 9.0149e-1 0

-2.3664e-4 0 -8.6137e-3

0 0 0

0 0 0

0 0 0

°'° O

1

1.0602e2

1.0602e2

1.0602e2

•.. 0 ... 1

4.0710el 4.0710el 4.0710el 4.0710el 4.0710el

0 9.5278el 5.8899el -5.8899el -9.5278el

0 0 0 0 0

0 0 0 0 0

2.3101e-1 -1.5935e-1 8.1846e-2 8.1846e-2 -1.593e-1

0 1.268e-1 -2.0525e-1 2.0525e-1 -1.268e-1

-2.8869e-l-8.9161e-2 2.3356e-1 2.3356e-1 -8.9161e-2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

q



The eigenvalues and eigenvectors of matrix .A%" 2 are as follows :

Mode 1 - 59.26 rad/s Unstable divergence x, 0y

Mode 2 - 7.972 Stable oscilliatory x, 0y

Mode 3 - 58.294 Unstable divergence 0z

Mode 4 - 0.956 Stable oscilliatory z

Mode 5 - 9.776 Unstable divergence y

Axial + pitch

Axial + pitch

Yaw rotation

Vertical motion

Lateral translation

Modes 1 and 3 are referred to as the "compass needle" modes, since they arise from the

tendancy of the suspended element to reverse its direction in the applied axial field, B x.

They are the most important from the control point of view, since they have the highest

unstable natural frequencies, close to 10Hz here. The mode shapes broadly correspond

to the solutions for larger systems given in Ref. 4.

3.2 Power Supply / Electromagnets

The resistance and inductance of the LAMSTF electromagnets have been

measured using standard instruments. The results are shown in Appendix A. There is

some difficulty in specifying the inductance due to eddy currents in the aluminum

baseplate and the (solid) iron electromagnet cores, as discussed more fully in Refs. 1,2.

The terminal voltage of a single electromagnet, inductively coupled to others,
can be written :

V 1 =I 1 (R 1 +LlS) +I 2L12s+I 3L13s+...

An array of five electromagnets can thus be represented by the single equation :

L 1 L12 L13 L14 L15

L21 L 2 L23 L24 L25

L31 L32 L 3 L34 L35

L41 L42 L43 L 4 L45

L51 L52 L53 L54 L 5

u

I1

12

13

14

15

-R 1 0 0 0 0

0R20 0 0

0 0R30 0

0 0 0R40

0 0 0 0 R 5

_ _ i1

12

13

14

_ I5

V 1

V 2

+ V 3

V 4

V 5

The LAMSTF power amplifiers are presumed to resemble a voltage amplifier with

current feedback, as shown in Figure 4. The input voltage to load current transfer

function in this case is :



I K i

Thus the state-spaceequation may be modified as follows:

L1 L12 L13 L14 L15 iT;

L21 L2 L23 L24 L25 [2

L31 L32 L 3 L34 L35 I3i

L41 L42 L43 L4 L45 14

L51 L52 L53 L54 L 5 j_I5

RI+Kk 0 0 0

0 R2+Kk 0 0

0 0 R3+Kk 0

0 0 0 R4+Kk

0 0 0

00 12 V2D I

0 13 + K x V3D [

0 i41 v4oIo R_+Kk_I5 I_V_D]

The values of K and k can be estimated by measuring the D.C. gain and break

frequency of the amplifier/coil combination. These have been set and measured as 3

A/V and 180Hz respectively. It is easily shown that for these values K=93.33 and

k=0.325. The state-space model becomes :

12

13

14

_I5

-1.1377e3 6.4601el 1.0092el 1.0092el 6.4601el

6.4596el -1.1376e3 6.4596el 1.0091el 1.0091el

1.0091el 6.4596el -1.1376e3 6.4596el 1.0091el

1.0091el 1.0091el 6.4596el -1.1376e3 6.4596el

6.4596el 1.0091el 1.0091el 6.4596el -1.1376e3

+

- -iI I12

13

14

_I5.

3.4172e3 -1.9404e2 -3.0313el -3.0313el -1.9404e2

-1.9404e2 3.4172e3 -1.9404e2 -3.0313el -3.0313el

-3.0313el -1.9404e2 3.4172e3 -1.9404e2 -3.0313el

-3.0313el -3.0313el -1.9404e2 3.4172e3 -1.9404e2

-1.9404e2 -3.0313el -3.0313el -1.9404e2 3.4172e3

Iv2 
Iv3 
Iv4 
LVs,J

3.3 Compensators

A dual phase-advance compensator is of the following form :



V__2o= (1 +nTs) 2V i 1 + Ts

In LAMSTF, the factor n was set as 11.3 and T was chosen as 0.0013. Both parameters

are thought to require some fine-tuning. A state-space model can be derived using a
standard canonical form :

I_2 _A__)

Ac = T T 2 _c =

1 0

Cc = 2n 2n 2 1 n 20

Using the values shown above, the model becomes :

 c:115385e359172e5J I1 0 _c = Cc = -1.7906e5 -7.4964e7 fl)c = 127.690

Five independent compensators can be placed in parallel by using the MATLAB

"APPEND" command.

3.4 Mixing

A mixing or decoupling matrix is included in order to distribute force and torque

demands (in model degrees-of-freedom) amongst the five electromagnets. Initially, a

basic matrix can be generated by solving for the current distribution required for 1 unit

of field or field gradient of the appropriate type and sense. This gives :

m

I1D]

I2D]

I3D] =

I4D[

I DJ

m

1.8282e3 0 1.9652e2 0 -1.4687e2

2.3703e3 1.6446e3-1.5901e2 1.1553e2-4.5418el

2.0347e3 1.016e3 6.0751el -1.8689e2 1.1885e2

2.0347e3 -1.016e3 6.0751el 1.8689e2 1.1885e2

2.3703e3 -1.6446e3 -1.5901e2 -1.1553e2 -4.5418el

D

-Bzl

By

In the analog controller, individual columns of the matrix were normalized to simplify
manufacture :



II]]I
12D

13D l I =

I4D'

0.7713 0 1 0 -1 ]
/

1 1 -0.8091 0.6182 -0.3092 1
0.8584 0.6178 0.3091 -1 0.8092 /

0.8584 -0.6178 0.3091 1 0.8092

1 -1 -0.8091 -0.6182 -0.3092

-B z

By i
Bxx

Bxy

_Bxz

This results in a residual gain matrix being effectively incorporated into the decoupler,

where the coefficients are the normalizing factors :

r-

I1D

I2D

I3D

I4D

_I5D

2.3703e3 0 0 0 0

0 1.6446e3 0 0 0

0 0 1.9652e2 0 0

0 0 0 1.8689e2 0

0 0 0 0 1.4687e2

IID'

12D'

I3D' I

I4D'

: D'J

In fact, a slightly different (earlier) set of field coefficients were used to calculate the

decoupling matrix actually implemented in hardware. Only the first column differs

significantly from that shown above :

i]
_ID

,l
"2D

tl

_3D =
tl

] 5D_

0.625 0 1 0 -1

1 1 -0.809 0.618 -0.309

0.768 0.618 0.309 -1 0.809

0.768 -0.618 0.309 1 0.809

1 -1 -0.809 -0.618 -0.309

Bz]
By l

3xx[

_XV I

3x .j

3.5 Eddy Current Effects

It has been found that the terminal characteristics of the electromagnets are

significantly affected by the induction of eddy currents into the aluminum mounting

plate and the solid iron electromagnet cores [2]. A simple analysis, assuming that the

eddy current circuit is independent of frequency (implying that the skin depth >>

material thickness; also referred to in the literature as the Single Time Constant

Model), gives a terminal voltage to current transfer function of:



I __

V-( 1(LmlS)2 )

(R + Ls) - Rel+ b"el s ....

where Ren, Len are the resistance and inductance of the n'th eddy current circuit and

Lmn is the mutual inductance between the primary (the electromagnet coil) and the

eddy current circuit. The demand voltage to current transfer function is :

i( K )V D -
((R+Kk) + Ls) - (LmlS)2

.°.

Rel+ LelS

Continuing, the field components generated (at the suspended object) can be expressed
as :

Kel Lml s

B-%I(, - KB(Rel +LelS) .... ) = %I+KelIel+...

where KB, Ken are constants representing the field generated at the suspension location

by the electromagnet and the n'th eddy current respectively. Now the factor Ken will,

in general, be different for each field component (see Section 3.1, _ matrix). Here, for

simplicity, it has been assumed that the ratio (Ken/KB) will be equal for all

components, since the eddy currents physically occur in circuits close to the suspension

electromagnets. This permits modelling of the eddy current influence by invoking a false
current :

Kel Lml s

K B(Rel+Lels)
+'..)I, whereB=KBI'

It should be noted that the change in terminal characteristics and the change in field at

the model are two separate effects and should be modelled as such.

It has been argued that the factors Ken , Len/Ren and Lmn can be estimated by

geometrical analysis and by careful measurements of electromagnet terminal

characteristics. Results are given in Appendix A. So far, it has not been possible to

express the change in terminal characteristics in an elegant generic state-space form.



However,numerical results for LAMSTF, usingresults from Appendix A are asfollows :

I12 48e 14037e81Ill I.A = % = e = 7.459e3 9.8385e5 _ = 0
1 0 0

- where only the eddy current in the aluminum plate is considered. In fact, analysis has

indicated that the eddy current in the iron core has negligable effect on system

dynamics, partly due to the high reasonant frequency involved (Re/Le).

The change in field at the suspended element due to the eddy currents can be

represented by parallel state-space models, where each model represents one eddy

current. The equations relating the actual current to the fictitious current I', for one

eddy current circuit, again using a standard canonical form, can be written:

KBLe 2

To integrate this model into the basic system, the _e I matrix must be modified slightly,

so as to carry the primary B - KBI term :

KeLm

Additional parallel eddy current circuits could be incorporated using the MATLAB

"PARALLEL" command, but again, analysis has indicated that only the eddy current

in the aluminum plate has a significant effect on system dynamics.

4. Comparison of Model to Hardware

The measured sensitivities of the position sensors, around the normal operating

point, are as follows :

Sensor Function Sensitivity (V/m)

1 Aft vertical 4232

2 Axial 3693

3 Forward vertical 6079

4 Aft lateral 5929

5 Forward lateral 2748



These figures are subject to considerablevariation dependingon precise alignment and

focusing of the sensors optics. Therefore, it seems reasonable to use an average
sensitivity for further calculations.

Sensitivity = 4536 V/m

The fore-and-aft spacing of beams 1 and 3 is 0.0317m and of beams 4 and 5 is 0.0349m,

leading to angular sensitivities in pitch and yaw of 143.8 V/tad and 158.3 V/tad

respectively.

Representative gain settings for the analog controller, qualitatively found to give

good damping in all degrees-of-freedom are :

Degree-of-Freedom Controller gain

Pitch (0y) 0.153 V/V

Yaw (Sz) 0.134

Axial (x) 0.2

Lateral (y) 0.203

Vertical (z) 0.548

Thus the overall system gains, measured from physical motion to the input to the

decoupling matrix, are :

Degree-of-Freedom Overall gain

Pitch (By) 22.0 V/rad

Yaw (0z) 21.2 V/rad

Axial (x) 907.2 V/m

Lateral (y) 1841.6 V/m

Vertical (z) 4971.5 V/m

All other parts of the hardware are specifically modelled in the simulation.

Implementing these physical gain values in the simulation, the

becomes:

Gn matrix



Gn --

B

22

0

0

0

0

0 0 0 0

21.1 0 0 0

0 907.2 0 0

0 0 1841.6 0

0 0 0 4971.5

It is then easily confirmed that the resulting system is stable and has adequate damping

and response in all controlled degress-of-freedom, as illustrated in Figure 5.

5. Discussion

The general outline of the dynamic model presented here is thought to be

reasonably valid insofar as it qualitatively reproduces observed behaviour, such as the

coupling between pitch rotation and axial translation degrees-of-freedom. However,

some of the numerical values presented are not exact. Most notably, there is a known

discrepancy between the calculated equilibrium suspension currents and those measured

in practice (the former being around 10% less than the latter). It is strongly suspected

that the magnetization of the magnetic core of the suspended element is less than

anticipated (i.e. less than 1.2 Tesla). Unfortunately, an accurate measurement of this

quantity is quite difficult.
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Y

Figure 1 - Large-Angle Magnetic Suspension Test Fixture (LAMSTF) Configuration

D Sensor
ecoup_rs Compensators

1

E

R
4

__ _;de

! s_, [
N

P _

UT I---_ mlr'_'''"c" ]_'_"
S

,_ AxlOl.

S
T
A
0

E

2
m To

3 Power
AMps

4

Figure 2 - Analog Controller Block Diagram



I1-5 I'l. 5

Power Supply/Coil

Acoil, _cmix,

ficoil, _coil

n

I

Eddy

currents

Plant

(_y, 8z, x, y, z)

Controller

AAc, _c, ¢¢c, _c

Figure 3 - Block Diagram of Essential Dynamics of LAMSTF

V D

i
L

R

fffJ

Figure 4 - Block Diagram of Power Supply/Coils



0.07

0.06

0.05

0.04

0.03

0.02

0.01

Without

With eddy current model

X

, ---r ........... F--- j ..... _............ ?............ , ........... ,

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time, seconds

Figure 5a - Pitch (Oy) Step Response of Simulated System

o

t_

e_

0.06

Without -_....
/

0.05 ,'/' P_k

/
0.04 /

/
/
/
/

0.03 /

0.02

0.01

OZ

With eddy current model

I

0 0.05 0.1
i I i i I i i

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time, seconds

Figure 5b - Yaw (0z) Step Response of Simulated System



0 iit
0.02 _-

4#

0.015

o 0.01

.Jl

0.005

-0.005

/

/
/

tt

/

t
i
¢

/

/
1

t t

/
i

t
i
1

s
t

i
i

/

X

" Without

With eddy current model

I

0.05

Oy

I I _ I I I I

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time, seconds

Figure 5c - Axial (x) Step Response of Simulated System

I

0.45 0.5

0.014

0.012

0.01

0.008

o

f_

0.006

0.004

0.002

i

out

With eddy current model .....

1 I I I I I I I I

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0._

Time, seconds

Figure 5d - Side (y) Step Response of Simulated System



o

c¢
om

4.5

3.5

2.5

1.5

0.5

xl0-a

I I I I

0 0.05 0.I 0.15 0.2
I I I I I

0.25 0.3 0.35 0.4 0.45

Time, seconds

0.5

Figure 5e - Vertical (z) Step Response of Simulated System



APPENDIX A - LAMSTF Specifications

K AmpereField Coefficients ( i)' per

Coil # B x By B z Bxx Bxy Bxz x 106

1 231 0 -94 2179 0 -2723

2 71 220 -94 -1503 1196 -841

3 -187 136 -94 772 -1936 2203

4 -187 -136 -94 772 1936 2203

5 71 -220 -94 -1503 -1196 -841

Coil # Byy By z Bzz Bxx x Bxxy Bxx z x 106

1 -1892 0 -287 3434 0 -53466

2 1790 -2590 -287 -18276 -14560 16371

3 -485 -1600 -287 16559 13733 -26790

4 -485 1600 -287 16559 -13733 -26790

5 1790 2590 -287 -18276 14560 16371

Coil # Bxyy Bxy z Bxz z Byyy Byy z Byzz Bzz z x 10 6

1 -21916 0 254 0 23744 0 295

2 -11938 8735 78 4944 50628 242 295

3 22896 -14134 -205 9129 34013 149 295

4 22896 14134 -205 -9129 34013 -149 295

5 -11938 -8735 78 -4944 50628 -241 295

All shown in T, T/m or T/m/m, per Ampere, times 106. Calculated using VF/GFUN,

including OPERA, with all iron cores modelled, using cartesian polynomial fitting of

field at grid points.

Equilibrium conditions

Io - {-13.586, -4.201, 10.994, 10.994, -4.201 } A; Ima x - 30A



Significant uncontrolled fields with Io asshownabove,T, T/m and T/m/m :

Bx = -7.8466e-3 Bxxx = 4.7101e-1 Bxx z = -2.3664e-4

Bxyy = 9.0149e-1 Bxz z = -8.6137e-3

(Bxz required = 0.0925 T/m)

Suspended element

m c = 22.5e-3 kg Ic = 5.508e-6 kg m 2 Vol = 2.498e-6 m 3

Mx = 954930 A/m (1.2T) (g = 9.80665 m/s 2)

Characteristic length = 0.02m (Actual length = 0.02095m)

Electromagnets

L = 0.0275 H R = 0.74 fl N = 509 turns

Lmutualadjacent 0.0016 H LmutUalnon_adjacent 0.00037 H

Eddy current circuits

The eddy circuit inductance is estimated by simple scaling laws, based on the measured

inductance of the electromagnet itself. The resistance of the secondary is then adjusted

to match the measured time constant. The mutual inductance is then adjusted to

match the measured peak magnitude of phase defect.

Aluminum plate

Lel = 1.0614e-7 H Rel = 1.4e-5 f_ Lml = 2.701e-5 H (0.5,x/(LLel))

Kel 1.1e-3 (including a factor accounting for magnetization of the iron cores)lV B--

Iron core

Le2 = 5.307e-8 H Re2 = 6e-3 fl

Ke2

= 6.2e-6 (as above)

Lm2 = 1.1461e-5 H (0.3*_/(LLe2))


